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The Rayleigh-Janzen expansion method is extended to plane and steady flows which 
contain one or more point vortices interacting with a smooth or sharp-edged obstacle. 
A uniformly valid approximate solution of the compressible-flow equations is 
deduced by applying a perturbation method and by using matched asymptotic 
expansions to solve the resulting singular perturbation problem. The method yields 
compressibility corrections for the vortex positions and for the velocities. Results are 
presented for the flow paat a circle and a pair of symmetric vortices (Foppl’s flow). 
They show that the compressibility effects are substantial and are consistent with 
experimental data. 

1. Introduction 
Several important aerodynamic problems involve the calculation of two- 

dimensional inviscid flows past impermeable contours and concentrated vortices. 
These problems include the modelling of the cross-flow past slender bodies at high 
angles of attack (Bryson 1959; Nielsen 1960) and of the flow about airfoils with 
trapped vortices (Saffman & Sheffield 1977, Huang & Chow 1982). For such flows, 
even at relatively low subsonic free-stream velocities, the compressibility effects can 
be significant. However, closed-form solutions have been obtained for the incom- 
pressible case only. The extension of these solutions to the compressible range is of 
theoretical as well aa practical interest. 

A classical method for evaluating compressibility corrections for subsonic flows is 
the well-known Rayleigh-Janzen expansion. When the flows contain point vortices 
this expansion fails near the vortex centres because compressibility effects are large 
there. The objective of the present p a p  is to extend the Rayleigh-Janzen expansion 
to the steady and plane flow past a contour and stationary vortices placed in a 
subsonic stream. For such flows the Rayleigh-Janzen expansion can be regarded as 
an outer solution, valid away from any vortex, which will be matched with an inner 
solution that holds near the centre of each vortex. A similar procedure was recently 
used by Moore (1985) in his study of the vortex ring in a compressible fluid. However, 
Moore’s considerations cannot be applied directly to flows past obstacles, mainly 
because in his case the compressibility effects in the outer region are negligible. 

The general solution is illustrated with an example of the flow past a circle and 
a symmetric pair of vortices placed in a subsonic stream. For this relatively simple 
flow, known in the incompressible case aa the Foppl(l913) flow, the compressibility 
corrections are obtained explicitly. The resulta presented show the effects of 
compressibility on the equilibrium positions of the vortices, on the velocities and on 
the streamlines. 
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2. Solution in the region of subsonic flow 
First we consider the inviscid, steady and plane flow past a closed contour and a 

single stationary vortex placed in a subsonic stream. The z-axis is parallel to the 
velocity U of the free stream and the origin of the coordinates is taken inside 
the contour. We assume that the velocities at the contour are subsonic, so that the 
vicinity of the vortex centre where the flow is supersonic is completely surrounded 
by subsonic flow. 

In the region in which the velocities are subsonic, an approximation of the 
compressible flow is obtained by using the Imai-Lamla method (Jacob 1959)f. This 
method extends the concept of complex velocity potential to compressible, plane and 
irrotational flows. In  applying the method, the coordinates z and y are changed into 
the non-dimensional complex variables 

z+iy .  - x-iy z=-  , z=- 
1 1 '  

where 1 is a characteristic length of the contour. Then for the plane and irrotational 
flow the dimensionless complex velocity potential is introduced as 

Here $ is the real velocity potential and @ is the stream function. The compressible 
Euler equations for an inviscid and perfect gas are written in terms of the complex 
velocity potential and successive approximations of the solution are obtained by 
expanding f (z ,  Z) asymptotically with respect to the parameter 

U 
M , = - < 1 ,  

a, 
(3) 

where a, denotes the speed of the sound in the fluid at rest. Retaining only the first 
two terms of this expansion we have 

f ( Z ,  2) = f O ( 4  + JG f,(z, 2) + o(@) .  (4) 

The leading termfo(z) in the expansion off(%, Z) is an analytic function of the complex 
variable z only and it represents the complex potential of an incompressible flow past 
the considered configuration. In  this incompressible flow the velocity U of the free 
stream and the circulation around the vortex are the same as in the compressible flow 
and, if the contour has a sharp trailing edge, the Kutta condition is satisfied, i.e. the 
velocity at the edge is finite. 

The second term in the expansion of the complex velocity potential is given by 
IJacob 19591 

where z1 is the coordinate of the sharp trailing edge or, when there is no such edge, 
of an arbitrary point in the flow field and g(z) is a function that has to be determined 
from the following requirements : 

(i) The imaginary part off,(%, 2)  is a uniform single-valued function in the flow field. 

t The Imai-Lamla method is a variant, suited particularly to  plane flows, of the RayleighJanzen 
expansion (see Jacob 1959). 
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(ii) The contour is a streamline in the second (i.e. of order q) approximation of 

(iii) The contributions of fl(z,Z) to the velocity of the free stream and to the 

(iv) If the contour has a sharp trailing edge, the velocity is finite at this edge. 
(v) The velocity has a vortex-type singularity when it approaches the vortex 

centre, i.e. it  becomes infinite as the inverse of the distance to the centre. 
Requirement (i) expresses mass conservation, (ii) and (iii) are the boundary 

conditions for the second approximation, and (iv) is the Kutta condition. The last 
requirement (v) is really a matching condition that could have been postponed to 
the discussion of the inner solution near the vortex centre. We prefer, however, to 
invoke this requirement now, because it enables us to evaluate completely the outer 
solution prior to, and independent of, considerations regarding the inner solution. 

In  determining fl(z, Z) that satisfies the above conditions, we have to take into 
account that the integral in (5 )  is a non-uniform, multi-valued function in the flow 
field. This behaviour is due to the singularities of dfo/dz at z = m and at the vortex 
position z = 6. The non-uniform parts of the integral can be evaluated by expanding 
the integrand (dfo/dz)e in power series near its singularities. The resulting expressions 
involve the strength of the vortex r and the circulation I', around the contour in 
the incompressible approximation of the flow. Denoting 

the flow. Hence the imaginary part of fl(z, 5) is constant at the contour. 

circulation around the vortex are zero. 

we obtain 
z Ill e) dz = I(z)+2i(k+ko) lnz+2ikCo(g) 21 ln(- 

where I(z) is a single-valued function in the flow field and Co(y) is the free term in 
the following expansion of df,/dz near the vortex centre : 

Now, the evaluation of fl(z, Z) can be simplified by taking into account that the 
vortex is stationary. In  the incompressible approximation of the flow the coordinate f 
of the centre of the stationary vortex is the solution of the equation (Milne-Thomson 

(10) 
1968) 

In the compressible flow the vortex centre is shifted to z = t[, but the difference 6- co 
and, consequently, Co(c) vanishes when Mo approaches zero. Therefore, the term 
involving Coca in the expression of the integral in (8) can be neglected, since, in view 
of (4) and (5 ) ,  its contribution to the complex velocity potential is of the order of 
magnitude Co(y) @ = o ( 3 ) .  Then, the function f,(z,Z) mtisfies the requirements (i), 
(iii) and (v) if g(z)  in (5 )  has the form 

CO(S0) = 0. 

g(z) = g1(z)-z-2i(k+k )-ln--ik, dfo 2 lnz+- D(C) 
O dz z1 z - g '  
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Here g1 is a single-valued analytic function bounded outside the contour, k, is a real 
constant related to the additional circulation around the contour due to the effects 
of compressibility, and 

Combining (5), (8) and (11) we have 

where 

In - -2-ik, lnz+- D(6) 
dz I 2: I1 z-g'  

In  terms of the function g,(z),  the conditions (ii) and (iv) satisfied byfl(z,Z) become 

Im(g,(z)) = -Im(N(z,Z))+const for lzl = 1, (15) 

Once the analytic function gl(z) and the constant k, are determined, the second 
approximation of the complex velocity potential is obtained. An apparent difficulty 
in the calculations is that N(z,Z) and, therefore the boundary values of gl(z) at the 
contour, depend on the unknown coordinate 5 of the centre of the stationary vortex. 
However, in evaluating g,(z) and k, we can assume that the vortex is situated at its 
incompressible equilibrium position z = go, since, owing to this assumption, the 
resulting error in the complex velocity potential is of o(Mif). Then, the calculation of 
gl(z) and k, becomes a standard problem from the theory of analytic complex 
functions. This problem is discussed in detail by Jacob (1959), who solved i t  using 
conformal mapping for the exterior of the contour on the exterior of a circle. 

To complete the evaluation of the approximate complex velocity potential the 
stationary position of the vortex in the compressible flow has to be determined. This 
position is obtained from the condition that the force acting on the vortex is zero. 
The force is evaluated by using an extension of Blasius' theorem to compressible flow 
(Barsony-Nagy 1985). Then, requiring that the significant terms of the force (i.e. the 
terms of order of magnitude larger than or equal to Wo) vanish, we get the following 
expansion for 5: 

Here 5, is the solution of (10) and 

6 =  5 0 + 6 1 ; 4 5 , + o ( ~ o ) .  (17) 

where the coefficients Co(~),Cl(c) and D(6) are defined in (9) and (12). In  this way 
the first-order compressibility correction for the position of the stationary vortex is 
expressed in terms of the vortex position in the incompressible approximation of the 
flow. 

In conclusion, the evaluation of the second approximation of the compressible flow 
involves the following steps. First, the analytic function gl(z) and the constants k, 
and 5, are calculated by assuming that the vortex is situated at its equilibrium 
position go in incompressible flow. Then, the centre of the vortex is moved to 5 as 
indicated in (17) and f,,(z) and N ( z ,  Z) are recalculated for new positions of the vortex. 
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Finally, the second approximation of the complex velocity potential is obtained by 
combining (4) and (13). 

We note that the method developed to calculate the approximate solution when 
there is one vortex in the flow field can be extended readily to the case of any finite 
number of vortices. In this case, requirements (i)-(iv) remain unchanged, whereas 
requirement (v) (regarding the singularity of the solution) has to be fulfilled for each 
vortex. In  addition, we assume that the regions of supersonic flow around the centres 
of the vortices do not intersect. Then, the extension of the solution to n vortices 
involves the modification of the functions I(%) and N(z ,  Z), only. Denoting by gj) and 
F) (j = 1’2, . . ., n)  the coordinates of the vortices and their strengths respectively, 
and introducing the constants k(j) = P ) / 2 z U Z  ( j  = 1,2 , .  .., n),  (8) and (14) are 
replaced by 

2~ = 1(2)+2i ko+ i k ( j )  l n ~ + o ( l )  (19) ( 1-1 ) ‘1 

and 

where the coefficients D(j) (j = 1,2, . . . , n) are 

Finally, the stationary positions of the vortices are found by solving a set of 
simultaneous equations obtained from the condition that the force acting on each 
one of the vortices vanishes. 

3. Solution in the vicinity of the vortex centre 
The approximate solution deduced in the previous section breaks down when 

z-gj) = O(k(j)M,),  as the first two terms in the expansion of the complex velocity 
potential become of the same order of magnitude. A uniformly valid approximation 
of the compressible flow will be obtained by supplementing and matching this (outer) 
solution with a local (inner) solution that holds near the centre of the vortex. To 
calculate the inner solution i t  is sufficient to consider the case when there is a single 
vortex in the flow and it is convenient to work with the real velocity potential 9. 
We introduce the polar coordinates r and 8 by putting 

z-g  = r eie. (22) 

Then, the approximate outer solution fails for r = O(kM,) and, as is usually done in 
the method of matched asymptotic expansions (see Van Dyke 1964)’ a ‘stretched’ 
inner coordinate is defined. In  our case the appropriate inner coordinate rl is 

r 
TI  = - 

kM,. (23) 

We start by determining the asymptotic behaviour of the outer solution which is 
required in the matching process. For this purpose, the velocity potential Q (obtained 
by taking the real part of the second approximation of the complex velocity potential 
deduced in the previous section) is expressed as a function of the variables rl and 
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9 and the result is expanded for small M, with r1 fixed. Neglecting the terms of order 
higher than @, and returning to the variable r we have 

’(‘I’ - k9+ ( r 2 + % k 2 x )  Re (C, e2ie) for r = O(kMo), (24) lU 

where C,  is the coefficient of ( z  - 5)  in the expansion of dfo/dz near the centre of the 
vortex as indicated in (9). 

The inner solution @(rl,9) is evaluated by using asymptotic expansions with 
respect to M ,  for rl fixed. Equation (24) suggests that the expansion of @(rl, 9)  has 
the form 

1’ - @(‘ - k 9 + A ( M o ) @ , ( r l , 9 ) + o ( ~ ) .  
lU (25) 

Here the leading term in the expansion is the exact solution for an isolated 
compressible vortex (Jacob 1959) and A(M,)  < 1 is a gauge function that has to be 
determined from the matching conditions. Introducing @(rl, 9)  into the well-known 
equation of the velocity potential in compressible flow (Lighthill 1955), we obtain 
that @,(rl, 9 )  satisfies the linear differential equation 

where y is the ratio of the specific heats. In (26) the coefficient of the derivative 
a2Gl/ar; vanishes at the circle rl = [{(y- l)]t where the velocity generated by the 
isolated vortex reaches its highest possible value in isentropic flow. Inside this circle 
the potential solution has no physical meaning. When rl increases, (26) changes its 
type from hyperbolic to elliptic at  the circle r1 = [ t (y+ l)];, which corresponds to the 
sonic line for the isolated vortex. We assume that there are no shock waves in the 
flow, so that G1(rl,9) and its derivatives are continuous. This assumption is 
reasonable as long as the region of supersonic flow does not reach the contour. Then, 
it can be shown that (25) has a unique solution that can be matched with the outer 
solutions and is bounded at r = [{(y- l)]k Fortunately, this solution can be obtained 
by using the method of separation of the variables, and we have 

G1(rl, 9)  = Ar?P ( a, b ;  c I ( 1 -- ?$)) Re (C, eBiB), 

where A is a constant, P(a, b; c I s )  is the hypergeometric function and we wrote for 
brevity 

(28) 
3 - 27 + (4y2 - 3)t 3 - 27 - (4y2 - 3$ 1 , b =  , c = a + b + 2 = -  a =  2(Y - 1) 2(Y - 1) y - 1 ’  

The inner solution @(rl, 9 )  is obtained by combining (25) and (27). To match it with 
the outer solution, @ is expressed as a function of r and then expanded asymptotically 
with respect to M, for fixed r .  The terms of order lower than or equal to MB, in the 
resulting expansion can be evaluated readily by using a connection formula for the 
hypergeometric function (Abramowitz & Stegun 1965). These terms coincide with 
those on the right-hand side of (24) if 

A W , )  = %, (29) 

r ( u +  2) T(b + 2) 
r (c )  

A = k2 , 
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t' 
U - (%+- X 

(@J -r 

FIQURE 1. Geometry of Foppl's flow. 

where r(s) is Euler's gamma-function. Finally, introducing into (25) @,, A(Mo) and 
A given by (27), (29) and (30) respectively, the inner solution becomes 

+ o ( x )  for = O(kMo). (31) 

We have deduced an approximate inner solution that describes the flow in the 
vicinity of the centre of any stationary vortex completely surrounded by subsonic 
flow. When there are several vortices in the flow field, the inner solution holds for 
each one separately. In  this case the constants k and C,  are replaced by the 
appropriate values for each vortex. It should be noted that, in our approach based 
on potential theory, a region of vacuum is formed close to the centre of the vortex. 
A more realistic model that avoids the region of vacuum can be obtained by 
introducing a rotational vortex core. However, this model is not discussed here, since 
it involves considerations related to rotational and non-isentropic flows which are 
beyond the scope of the present paper. 

We would like to mention, also, that an equation similar to (26) was deduced by 
Moore (1985) in his study of a compressible vortex ring. Although Moore's equation 
is somewhat more general (it includes a free term due to the curvature of the vortex), 
the velocity potential @ given by (31) cannot be obtained from his solution, since 
in his case the compressibility effects are negligible far away from the vortex ring. 

4. An example 
As an application, we extend the classical Foppl solution (Foppl 1913) to the 

compressible range. We consider the flow past a circle and a pair of symmetric vortices 
placed in a subsonic stream (figure 1). This configuration can be regarded as an 
approximate model of the cross-flow of an infinite yawed circular cylinder (Bryson 
1959). 

The complex velocity potential fo(z) of the incompressible flow past the configura- 
tion considered and the corresponding stationary positions of the vortices are well 
known (see Milne-Thomson 1968). In  the present case the flow symmetry simplifies 
essentially the calculation of the compressibility corrections to the outer solution. 
For this flow the Kutta condition is not needed and it is replaced by the requirement 
that there is no circulation around the circle. Then, since the sum of the circulations 
around the vortices is also zero, all the logarithmic terms drop out from the expression 
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FIGURE 2. Equilibrium positions of the vortices. Present theory: -, computed vortex positions; 
-__  , validity boundary of the solution. Experiments: A, Mo = 0 (Fidler et d. 1977); x , Mo = 0.28 
(Jorgensen 1977 - in Jorgensen’s study no vortex strengths are given); 0, Mo = 0.353 (Owen & 
Johnson 1979). 

t 

I / - O  \ 

-2.0 

0.3 - 0.35 
FIQIJRE 3. Effects of compressibility on the velocities at the circle (kc’) = -0.8). 

of the function N(z,Z) given in (20). Choosing the radius of the circle as t h  
characteristic length 1 in the definition of the dimensionless variables, the boundary 
condition satisfied by g,(z) at the circle, (15), can be written in the form 

Im (gl(z)) = Im ( N ( F ,  2) + const for lzl = 1. (32) 

According to Schwarz’s symmetry principle and the circle theorem (Milne-Thomson 
1968), N ( T 1 ,  Z) is an analytic function of the variable z alone. It is found that the 
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FIQURE 4. Variation of the velocity components in the polar coordinate system centred at the 
starboard vortex along the ray 0 = 45' (No = 0.3, k(') = - 1, y = 1.4): -, outer solution; ---, 
inner solution. 

singularities of N(Z-l, 2) outside the circle are poles situated at z = CQ and at the vortex 
centres z = 5 and z = $. Then, the function g,(z) is readily calculated by subtracting 
from N(Z-l, Z) its principal parts at these poles and the images of the principal parts 
with respect to the circle lzl = 1. By this procedure, the function g(z)  and, 
consequently, fi(z, Z), is obtained in closed form. The result is quite lengthy and is 
given explicitly by Yungster (1985) along with the expressions for the coordinates 
of the vortices. The inner solutions near the centres of the two vortices are obtained 
by introducing into (31) the values of k and C, for each vortex. 

Figure 2 shows the stationary position of the starboard vortex aa a function of the 
parameter Mo and the non-dimensional strength k(') of the vortex. It is seen that the 
effects of compressibility on the computed equilibrium position of the vortex become 
stronger as Mo and Ik(l)l increase, and their trend is to move the vortex closer to both 
the axis of symmetry and the circle. We note, however, that when M ,  and Ik(')l exceed 
some critical combination of their values, the present approximation breaks down, 
since the velocities at the circle become sonic or the regions of supersonic flow around 
the vortex centres intersect. The positions of the vortex for these critical values are 
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FIGURE 5. Streamline pattern at the lee-side of the circle (k") = -0.8). 

shown in figure 2 by the broken line and the validity of our results is restricted to 
the vortices situated below this line. 

The computed equilibrium positions are compared in figure 2 with experimental 
data measured at the cylindrical after-part of ogive-cylinder bodies at high angles 
of attack (Fidler, Nielson & Schwind 1977; Jorgensen 1977; Owen 6 Johnson 1979). 
The measured vortex positions - both in the incompressible and compressible 
cases - are in close proximity to the computed curves for the corresponding No, 
whereas the measured vortex strengths lk,l are less than predicted. Consequently, 
for the same strengths, the computed vortex positions are situated closer to the body 
than those measured. This displacement is consistent with the omission of three- 
dimensional effects in the present model. In  the compressible case, the measured 
vortex positions are placed outside the validity boundary of the present theory (they 
correspond to the appearance of supersonic velocities at the z-axis). However, the 
consistency of the results in this case can be explained, since the velocities along 
the z-axis become subsonic when the measured vortex strengths are used in the 
computation. 

Figure 3 shows the velocity at the circle as function of the arc B measured from 
the forward stagnation point. The effects of compressibility are found to be strong 
in the vicinity of /? = f90' and at the rear part of the circle that is situated close 
to the vortices. The matching of the outer and the inner solutions is illustrated in 
figure 4. It gives the variations along the ray 0 = 45' of the velocity components v,. 
and u, in the polar coordinate system centred at the vortex. In  the calculations we 
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chose y = 1.4. The results corresponding to the two solutions nearly coincide at values 
of r slightly larger than )Ic(')M0I [icy + l)]t, indicating that the matching is achieved 
at high subsonic velocities. 

A comparison between the streamline patterns of the incompressible and the 
compressible flow at the lee-side of the circle is shown in figure 5. We found that 
outside the region shown, the compressibility effects on the streamlines are negligible 
in the range of applicability of the present solution, i.e. for 0 < Mo < 0.35. 

5. Conclusions 
A method has been developed to calculate compressibility corrections for the 

potential, steady and plane flow past a contour and stationary vortices. The method 
involves the asymptotic matching of an outer and an inner solution and the 
determination of the stationary vortex positions. The outer solution is valid 
throughout the flow field except in the vicinities of the vortex centres. Its calculation 
was reduced to the evaluation of the complex velocity potential of the incompressible 
flow past the configuration considered and of an additional analytic and bounded 
complex function. The inner solution, which governs the flow near the centre of any 
stationary vortex surrounded completely by subsonic flow, was obtained in closed 
form. In essence, the whole method can be regarded as the extension of the second 
approximation of Imai-Lamla to the case when there are vortices in the flow. It holds 
as long as the free stream and the velocities at the contour are subsonic and the regions 
of supersonic flow around the vortices do not intersect. 

The method was applied to the flow past a circle and a symmetric pair of stationary 
vortices in a subsonic stream. The results show that the effects of compressibility on 
the equilibrium positions of the vortices and on the velocities can be significant. The 
compressibility corrections are qualitatively consistent with experimental results. 
The effects of compressibility on the streamlines are noticeable only in a bounded 
region that includes the vortices. 

We note that the procedure outlined in $2 for the calculation of the compressibility 
corrections to the vortex position has also been applied to the flow past a Joukowski 
airfoil with a trapped vortex (Barsony-Nagy 1985). 

The authors wish to thank Professor D. W. Moore of the Imperial College of Science 
and Technology, London, for his constructive comments and for pointing out an error 
in an earlier version of the paper. 
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